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We recently described the high-resolution X-ray structure of a
helical bundle composed of eight copies of theeptide Zwit-1F
(Figure 1A,B)! Like many proteins in nature, the Zwit-1F octamer
contains parallel and antiparallel helices, extensive inter-helical
electrostatic interactions, and a solvent-excluded hydrophobic core.
Here we explore the stability of the Zwit-1F octamer in solution
using circular dichroism (CD) spectroscopy, analytical ultracen-
trifugation (AU), differential scanning calorimetry (DSC), and
NMR. These studies demonstrate that the thermodynamic and
kinetic properties of Zwit-1F closely resemble those of natural
o-helical bundle proteins.
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Figure 1. (A) Helical net representation of the Zwit-1F monomg#-

Amino acids are designated by the single letter corresponding to the
equivalentxr-amino acid. O signifies ornithine. (B) Zwit-1F octamer structure
determined by X-ray crystallograpRy(C) Plot of MREygs as a function of
[Zwit-1F] fit to a monomer-octamer equilibrium. Inset: CD spectra (MRE

in units of 1¢ degcm?-dmol~?) at the indicated [Zwit-1F]£M).

CD spectroscopy indicates that Zwit-1F is minimally-Belical
in dilute solution (as judged by the molar residue ellipticity at 205
nm, MRExs)? but undergoes a large increase in helical structure
between 20 and 2Q@M (Figure 1C). The concentration dependence
of MRE;gs fits @ monomet-octamer equilibrium with an association
constant of 4.0x 10°® M~7 (In K, = 70.5 4+ 1.9)3 This value
matches the result of AU analysis, which fits a monofmetamer
equilibrium with InK; = 71.0+ 0.93 Taken together, the AU and
CD data support a model in which unfolded Zwit-1F monomer is
in equilibrium with folded octamet.

Examples of natural octameric proteins include the histones
(hetero-octamer), TATA binding protéifoctamer h 1 M KCI),
and the thermodynamically and structurally characterized hem-
erythrin (In K, = 84)7 Although Zwit-1F is less stable than
hemerythrin, it is smaller in mass (13.1 vs 110 kDa) and interaction
surface area (7000 vs 15 00®)A8 To compare the stability of
Zwit-1F to that of proteins of diverse size and stoichiometry, we
calculated the free energy of association pémAburied surface
area (AGareq. Issues of molecularity aside, theGyeq0f Zwit-1F
is higher than that of hemerythrin, the tetrameric aldolase, and
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Table 1. Comparison of Protein Association Parameters?@

protein (stoichiometry) MW nonomer AGyea
Zwit-1F (8) 1.6 kDa 5.9
hemerythrin (8) 13.8 kDa 373
aldolase (4) 39.2 kDa 39
GCN4 (2) 4.0 kDa 48
ROP (2) 7.2 kDa >3.018

a AGgreavalues in units of caimol1-A~2, Interaction surface areas and
AGgreacalculated as described in Supporting Information.
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Figure 2. (A) Temperature-dependent CD analysis of Zwit-1F. Plot of

MREzos as a function of temperature at the indicated Zwit-1F concentration
(uM). (B) DSC analysis of Zwit-1F unfolding fit to a subunit dissociation
model. Raw data are shown as black cirdes.

natural helical bundle proteins GCN4 and ROP (Table 1). In fact,
AGgrea for Zwit-1F is close to the average value (70 2.8
calmol~1-A~2) observed for protein complexes burying at least
1000 A of surface area upon associatfofl. The comparison
between Zwit-1F and hemerythrin implies that the lower affinity
of Zwit-1F is due to its small size and not an inherent instability
of 53-peptide complexes.

Temperature-dependent CD studies (Figure 2A) show Zwit-1F
to exhibit a concentration-dependeny, an inherent property of
protein quaternary structuté.The Zwit-1F Tn,, which increases
from 57 °C at 50uM to 95 °C at 300uM, is comparable tdl,
values of thermostable proteins such as ubiquilig € 90 °C)
and bovine pancreatic trypsin inhibitof{ = 101°C).1> The Zwit-
1F Ty, is significantly higher than th&,, of GCN4 (41-78 °C at
1-880uM)*® and ROP (5871 °C at 0.5-160 uM).1” We note,
however, that the unfolding of Zwit-1F is less cooperative: the
width of the temperature derivative of the CD signal at half-
maximum is 40 versus 28C for GCN4 or 15°C for ROP6.17

A high T, is not a definitive measurement of thermodynamic
stability, so DSC was used to further characterize Zwit-1F unfolding
(Figure 2B). At 300uM concentration (where Zwit-1F is 87%
octameric), the temperature-dependent heat cap&;itypéeaks near
the T, identified by CD. This peak is embedded in a sloping
baseline §Cy/0T = 5.1 catmol~1-K~2 = 3.1 mcalg1-K~?) that is
similar to theCp versus temperature plot of monomesiepeptides,
for which no cooperative unfolding peak has yet been obsetved.
For most natural proteinsyC,/dT) is about 1 mcab~*-K~2in the
folded staté? but GCN4 ¢C,/oT = 3.6 mcalg 1-K~2?)1¢and some
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Figure 3. (A) 500 MHz *H NMR spectra of 1.5 mM Zwit-1F, acquired in
phosphate-buffered “¥D” (9:1 H,O/D,0) or at the indicated times after
reconstitution of a lyophilized Zwit-1F sample in phosphate-buffergd.D

proteins. In fact, thély,, AGarea and AHcy for Zwit-1F are even
comparable to much larger natural proteins. Taken together with
the recent high-resolution structure of Zwit-1fese studies show
that f-amino acid heteropolymers can assemble into quaternary
complexes that resemble natural proteins in both solid-state structure
and solution-phase stability. We note that our characterizations do
not preclude some molten globule character of the Zwit-1F core in
solution?” Nonetheless, these studies establish Zwit-1F as a
remarkably protein-like stepping stone in the path toward fully
synthetic mimics of biological molecules.
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(B) Peak heights of the indicated resonances (normalized to the peak atDr. F. Schwarz (NIST) for the program EXAM.

6.70 ppm) fit to exponential decayBars indicate standard error.

ROP mutantsdC,/dT = 4—5 mcatg~1-K~2)13 have sharply sloped
pretransition baselines like Zwit-1F.

The DSC data fit well to a process defined by a two-state
transition with dissociation of eight subunits using the program
EXAM.318 The fitted enthalpy and heat capacity change per mole
octamer are 107 .4 0.3 kcatmol~* and 1.4+ 0.1 kcatmol~1-K~1,
respectively. Substituting these values into the Giltdslmholz
equatiod yields an equilibrium constant of 5.8 10° (In K =
73.3+ 1.4) at 25°C, in excellent agreement with values derived
from CD and AU data. The integrated calorimetric unfolding
enthalpy AHca) for Zwit-1F is 7.2 calg™?, within the range
observed for natural globular proteins (5.21.8 calg™1),1%20 but
somewhat lower than GCN4 (7.7 egi?)?* and ROP (9.5 cag1).17

The NMR spectra of many well-folded natural and designed

proteins are characterized by differentiated amide resonances and

slow hydrogen/deuterium exchangelhe amide N-H resonances
in theH spectrum of Zwit-1F, under conditions where the sample
is 97% octameric, span 1.4 ppm (Figure 3A). While this span is
narrower than that observed in the NMR spectra of large proteins
such asa-lactalbumin (3 ppm), it is comparable to that seen for
coiled-coil proteins GCN4 and ROP (1.3 and 2.2 ppm, respec-
tively).1323.24In contrast to Zwit-1F, the amide resonances of the
poorly folded, monomerig-peptide Acid-1Y*211 span only 0.5
ppm3 These results indicate that the Zwit-1F fold in solution creates
distinct electronic environments for the amide backbone protons.
Participation in a hydrogen bond can protect an amideHN
from exchange with bulk solvent; since exchange occurs from the
unfolded state, a slow amide exchange rate constgicorrelates
with protein stability in solutior¥? Exchange is often characterized
by a protection factorR) equal tok/kex, Wherek. is the rate
constant for exchange of a random coil amideHlunder similar
conditions. When a lyophilized sample of Zwit-1F is redissolved
at 1.5 mM concentration in fD, 9 of 14 resolvable peaks require
more tha 4 h tobecome indistinguishable from baseline. The time

Supporting Information Available: Experimental procedures,
Table 1 calculations, and data fits (PDF). This material is available
free of charge via the Internet at http://pubs.acs.org.
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